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ABSTRACT

This session offers an open forum to discuss
issues and directions of research in the areas of model
updating, predictive quality of computer simulations,
model validation and uncertainty quantification.
Technical presentations review the state-of-the-art in
nonlinear dynamics and model validation for structural
dynamics. A panel discussion introduces the discussion
on technology needs, future trends and challenges
ahead with an emphasis placed on soliciting
participation of the audience.

One of the goals is to show, through invited
contributions, how other scientific communities are
approaching and solving difficulties similar to those
encountered in structural dynamics. The session also
serves the purpose of presenting the on-going
organization of technical meetings sponsored by the
U.S. Department of Energy and dedicated to health
monitoring, damage prognosis, model validation and
uncertainty quantification in engineering applications.
The session is part of the SD-2000 Forum, a forum to
identify research trends, funding opportunities and to
discuss the future of structural dynamics.

NOMENCLATURE

The recommended “Standard Notation for Modal
Testing & Analysis” is used throughout this paper [1].

1. INTRODUCTION

In many fields of computational sciences, numerical
models are developed for predicting the response of a
system when the phenomenon is not accessible by
direct measurement or when numerical simulations are
cheaper than testing. Predictions are also sought after
for studying phenomena that can not be tested, for

example, failure, catastrophic events or any other
occuring in the tails of the probability density functions.

Nevertheless, developing sophisticated physics-
based models does not necessarily guarantee accuracy
and predictability. It must somehow be verified that the
many assumptions involved in the successive steps of
idealization, discretization and modeling yield
satisfactory predictions. This is known as model
validation and it is usually carried out by comparing the
predictions of a model or family of models to test data.
If the agreement between the two sets is not
satisfactory, design parameters can be optimized to
improve the predictive quality of the models. In
structural dynamics, the conventional approach to
inverse problem solving is the finite element model
updating technology that has been extensively studied
for many decades [2]. Most techniques documented in
the literature are formulated in the frequency domain
and apply to linear systems and stationary responses. It
is only in the past decade (1990-2000) that serious
attempts have been made at extending this technology
to nonlinear systems and transient signals [3].

As structural dynamics becomes increasingly non-
modal, stochastic and nonlinear, the finite element
model updating technology evolves into the broader
notions of model validation and uncertainty
guantification. For example, particular re-sampling
procedures must be implemented to propagate
variability information through a forward calculation;
non-modal features must be defined to analyze
nonlinear data sets [3]. It is attempted to show how
other scientific communities (physics, statistics,
computational biology, climate science, etc.) are
approaching and solving difficulties similar to those
encountered in structural dynamics. The session
consists of a combination of technical presentations,
panel discussions and open discussions where the
active participation of the audience is encouraged.
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Presentations introduce the subject, review the
technical issues and motivate the discussion. Part of
the open forum is focused on discussing predictability,
model validation, uncertainty quantification and related
issues. The session also serves the purpose of
presenting the on-going organization of technical
meetings scheduled throughout 2001-2002, sponsored
by the U.S. Department of Energy (DOE) and dedicated
to health monitoring, damage prognosis, model
validation and uncertainty in engineering applications.

In the remainder, current trends in modeling and
predictability are discussed. The intent is to show that
what can be observed in structural dynamics is not
specific to our community. Also, we would like to
promote the idea that experience may be gained from
learning what is being achieved in other scientific
communities. The discussion is then focused on the
evolution of structural dynamics and consequences in
terms of model validation needs. To conclude, several
research trends are briefly introduced.

2. WHAT MODEL FOR WHAT PURPOSE?

The dynamics of systems commonly analyzed in
most computational sciences is strongly influenced by
the nature of particular partial differential equations.
When complex phenomena are studied, the evolution
from the system'’s initial conditions typically exhibits a
separation of scales behavior. An example is the
modeling of wild fires where small-scale phenomena
must account for the turbulent nature of fire while large-
scale phenomena exhibit coherent structures that
mathematical operators such as the Laplacian may
represent with satisfactory accuracy. In structural
dynamics, this certainly applies to the phenomena by
which energy is dissipated in a structure. For example,
the Coulomb damping model provides a deterministic,
large-scale description while the phenomenological
behavior is highly stochastic and represented by the so-
called “stick and slip” at the microscopic level.
Statistical models explain these behaviors by coupling
mean-field theories to large deviation principles that
characterize the system’s most probable states.

This remark brings us to our first point. The total
predictability that may be expected from a particular
model depends on the purpose intended for that model.
Generally, the traditional approach for model validation
is stated as follows:

“My model is valid because it reproduces the
test data with adequate accuracy...”

Nevertheless, reproducing test data does not guarantee
predictability away from the region in the design space
that relates to the test data. Also, this approach may be
irrelevant when it comes to phenomenological models
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or statistically accurate models that do not provide
deterministic outputs. Similar trends can be identified in
other scientific communities such as physics, statistical
sciences, biology and climate science. It can be further
observed that the tools being applied to model
validation problems are quite different from the tools
generally used by structural dynamicists. In Figure 1,
an overall description is provided of the techniques
involved to validate computer simulations.

Physics-based Design of Statistical
Modeling Experiments Modeling
Numerical Model Uncertainty
Optimization > Validation €= ouantification
Phenomenological Component Full Scale

Testing Testing Testing

Figure 1. Conceptual view of model validation.

It is our opinion that the focus of the research in
model validation should be shifted from validating
deterministic models to validating statistically accurate
models. This need arises increasingly because
environmental variability and other sources of
uncertainty in manufacturing tolerances and assembly
procedures must be accounted for to fully capture the
spectrum of behavior of the systems analyzed (from
nominal response to catastrophic failure). Therefore,
the concept of model validation should be strongly
coupled to uncertainty quantification, a relationship that
has generally been overlooked by the conventional
finite element model updating technology.

3. WHAT DOES IT TAKE TO BE PREDICTIVE?

Even if very complex numerical simulations can be
performed on today's most powerful computing
platforms, the central question remains: What does it
take to be predictive? The five elements generally
mentioned as being critical when it comes to assessing
the predictive accuracy of a model are:

1) The geometry;

2) The physics;

3) The sources of uncertainty;
4) The model sensitivities;

5) The outcome of the model.
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Approximating the geometry and the physics
remains an issue of importance in many scientific fields
such as wild fire modeling, traffic modeling or global
climate prediction. In structural dynamics however, the
capabilities are generally available to represent any
geometry at any precision level. Similarly, the physics
of the systems dealt with is well described, at least at
the continuum level, by the equations of solid
mechanics and fluid dynamics. Therefore, our
discussion will focus on other aspects even if it is
acknowledged that significant research efforts are
currently being spent in areas such as multi-scale, high-
fidelity material modeling.

Modeling uncertainty and calculating the model’s
sensitivities (or estimating the statistical correlation of
an output y, to an input p) may offer significant
computational challenges when nonlinear, stochastic
models are involved. Similarly, defining the outcome of
a model assumes that relevant features and metrics
can adequately assess its purpose. Analysts dealing
with complex numerical simulations that generate
several Giga-bytes of output may be overwhelmed by
the amount of data produced. Data compression and
pattern recognition tools then become key components
of the analysis.

4. SPECULATIVE OUTLOOK

When analyzing the dynamic response of a
complex system using the finite element method, it is
not acceptable to neglect the contribution of an
important component, joint or interface. In the past,
neglected dynamics were accounted for by tuning
parameters in the model to agree with the experimental
data. For example, the damping (modal or other) was
determined “ad hoc” using test data obtained from
testing the fully assembled system. Then, the identified
damping properties were added to the model to
improve its predictive accuracy. At present, some of the
full-scale testing capabilities which formerly existed at
the U.S. national laboratories and many other facilities
in the automotive, aerospace and civil engineering
communities are no longer functional. Therefore, it is no
longer possible to reconcile a model with experimental
data for all environments. In the future, models will be
constructed with limited use of these expensive, full-
scale test data sets.

To the evolution of testing facilities and practices
must be added the current trends in modeling and
analysis. Figure 2 illustrates what, we believe, will be a
typical structural dynamics application of the 21°%
century. It represents a tri-axis MEMS micro-sensor
developed for health monitoring. Although this system
should not be referred to as a “structure” (because its
primary purpose is not to carry loads), structural
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dynamics clearly plays a central role in reliability
analysis, thermal and electromagnetic modeling.

Figure 2. MEMS sensor, http://www.imi-mems.com.
(Courtesy of Integrated Micro Instruments.)

This example illustrates that structural dynamics
with its interaction with other scientific domains and
emergent technologies will become increasingly:

1) Nonlinear;

2) Non-structural;
3) Non-modal;

4) High bandwidth;
5) Multi-physics.

In these conditions, can the concept of finite
element model updating that has been developed for
linear, modal dynamics be generalized? Is model
updating the correct answer to model validation? What
“features” other than the conventional frequency
response functions, mode shapes and resonant
frequencies can be extracted from the data to
characterize the response of a nonlinear system? How
to quantify the total uncertainty of an experiment? How
to propagate the parametric uncertainty of a numerical
simulation? These are some of the questions that we
try to address in the session.

5. MODEL UPDATING VS. MODEL VALIDATION

We would like to emphasize that model validation
should be thought of as a broader concept than model
updating. A numerical simulation is not necessarily
validated after the output has been compared to test
data and the model has been updated. Instead, it is
generally agreed upon that new, well-thought strategies
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must be established for model validation. They
integrate tools such as component testing, full-scale
testing, test-analysis correlation, design of computer
experiments, statistical analysis and finite element
model updating (see Figure 1).

For validating computer models, it is generally
agreed upon that errors caused by our imperfect
knowledge of “separable” physics (that is, effects that
can be decoupled from each other) should be identified
first. Then, the sources of variability and modeling
errors that may result from the successive steps of
system integration can be identified and corrected. At
the separable physics or continuum levels, phenomena
are generally complex but dedicated and well-controlled
testing procedures can be defined. At the sub-assembly
or full-scale levels, testing is difficult and variability may
be a concern but few unknowns remain to be inferred
from test data.

In addition to recognizing that a model must be
gradually validated, great attention should also be paid
to the operating conditions and the model's purpose.
Clearly, two different experiments and probably two
different models must be developed when the same
component is subjected to random vibrations or shock
response. The purpose of a model (that is, what the
model needs to predict) is also of paramount
importance because it dictates the features and metrics
on which the validation should focus. As a result, model
validation must be thought of in terms of a matrix of
experiments rather than a single test-analysis
correlation study. An example is provided in Figure 3
that illustrates the coupling between models and
applied loads. To be complete, a third axis that would
represent the model’s purpose should be added.

Modal
Analysis

Visco-elastic

Transient Shock
Testing Response ...

Loading

Orthotropic

v' Is the physics
understood?
Are dedicated tesbeds
available?
v Are models validated

at the component-level?

\4

Model v

Figure 3. Matrix of model validation experiments.
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An example of practical implementation of this
paradigm is the validation of complex engineering
simulations performed at Los Alamos National
Laboratory for the Accelerated Strategic Computing
Initiative (ASCI) program. The application illustrated in
Figures 4-5 represents the highly transient response of
a threaded joint assembly due to explosive loading. The
explicit finite element model features 1.4 million
elements, 480 contact pairs and more than 6 million
degrees of freedom. Nonlinearity arises in the form of
pre-load, contact mechanics, material modeling and
thermal coupling. When running on an ASCI platform
with 504 dedicated processors, one hour of CPU time is
required to simulate 10° second of response.

Figure 4. LANL forward mount test.
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Figure 5. Strain responses (sensor 1) for two tests.

Full-scale, explosive testing has been performed
and multiple test data sets are available for estimating
the degree of repeatability of the experiment. Design of
experiments, statistical analysis and model validation
are being implemented to identify specific joint
properties as well as the degree of variability of the
assembly. Figure 4 pictures the system instrumented
prior to detonation and Figure 5 illustrates the variability
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obtained from tests with different assembly tolerances.
Future plans include scheduling more tests at higher
impulse levels and assessing if the updated numerical
model can predict the dynamics of the system at input
levels different from those used during the updating.
Preliminary results are presented in Reference [4].

The ultimate task of verifying that predictions of the
optimized model are correct remains a challenging one.
This is nothing less but the old mathematical dilemma
between interpolation and extrapolation. Our opinion of
this issue is that model validation does not exist. There
is only model “invalidation” as demonstrated by
Pearson’s work on hypothesis testing [5], that is, a
model may be considered correct as long as it can not
be proved wrong. Practically, this implies that:

1) Test-analysis correlation must be able to
discriminate discrepancies caused by
environmental variability, experimental and
modeling uncertainty from those caused by
parametric modeling errors;

2) The consistency between different models
must be assessed when different features
and metrics are used to define the
optimization’s objective functions;

3) Data sets not used during the updating step
are required to assess the predictive quality
of a model;

4) Probabilities must be assigned to each
model developed to reflect the degree of
confidence (or lack of confidence) in its
prediction.

6. DIRECTIONS OF THE RESEARCH

To conclude this discussion, five issues are briefly
introduced that seem critical to the success of model
updating, uncertainty quantification and model
validation for linear and nonlinear dynamics.

1) Uncertainty quantification.

The success of any model validation depends on
the ability to quantify uncertainty. The current approach
in statistical sciences is to analyze the error of the
model output. This is not efficient for identifying the
sources of discrepancy between test and analysis
results. Instead, the uncertainty should be built at the
beginning of the analysis, then propagated through the
forward resolution. One potential approach is Bayes
inference [6] that estimates the posterior probability,
that is, the probability of the model {p} given data {y}.
What is therefore important is not necessarily that the
correlated models reproduce the responses measured
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during a single test but that they predict the response
levels with the same probability of occurrence as the
one inferred from test data.

2) Sampling and fast probability integration.

The notions discussed here rely strongly on the
capability to propagate uncertainty and/or variability
throughout an analysis. For large-scale applications
featuring nonlinear models, Monte Carlo simulations
remain computationally too inefficient when it comes to
predicting unlikely or catastrophic events, which is one
of the main reasons for carrying out an analysis.
Stochastic finite element techniques [7] and fast
probability integration methods [8] must therefore be
developed and interfaced with engineering codes.
Accelerated sampling methods such as the Latin
Hypercube sampling [9], Taguchi arrays and orthogonal
array sampling [10] are efficient alternatives.

3) Generation of fast running meta-models.

Efficient numerical optimization requires that the
objective functions be obtained at low computational
cost. Therefore, fast running models or meta-models
must be generated to replace the expensive, large-
scale simulations. One difficulty of fitting meta-models
is efficient sampling, that is, the generation of sufficient
information in regions where the feature’s joint
probability density function is maximum. This issue has
been the focus of recent advances in the statistics [11].

The second direction of open research is the
implementation of probabilistic meta-models when the
objective of model validation is to account for sources
of variability in the experiment and the numerical
model. Stochastic processes can also be included to
propagate other sources of discrepancy between test
and analysis data such as numerical and truncation
errors or to bound the experiment’s total uncertainty.
This procedure, well-known in the geo-physics
community, is progressively being tested and applied in
structural dynamics [12].

4) Feature extraction.

Large computer simulations tend to generate
enormous amounts of output that must be synthesized
into a small number of indicators for the analysis. This
step is referred to as data reduction or feature
extraction [13]. These features are typically used to
define the test-analysis correlation metrics optimized to
improve the predictive accuracy of the model. The main
issue in feature extraction is to define indicators that
provide meaningful insight regarding the ability of the
model to capture the dynamics investigated. Features
that are used to analyze nonlinear, transient data sets
include: the RMS error of time series; the principal
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component decomposition; the shock response
spectrum; AR, ARX and ARMA-based features; the
power spectral density; higher-order  statistical
moments; and probability density functions.

5) Statistical hypothesis testing.

Another issue of open research is the problem of
establishing a correlation between multiple data sets.
By this we mean, “assessing the degree to which two
populations are consistent with each other.” Such
statistical consistency can be assessed using the
Mahalanobis distance and a standard, multivariate
Hotelling’s T test. These statistics, however, can only
compare the mean of two distributions. One of the only
possibility available for testing both mean and variance
is to calculate Kullback-Leibler's relative entropy
defined as the expected value of the ratio between the
probability density functions of the two populations.
These statistics are attractive because they are
independent of the parent distribution.

The computational requirements associated with
this procedure may become very important because the
probability distribution of each feature considered for
test-analysis correlation must be assessed for each
candidate design evaluated during the optimization.
This, however, is the only possibility to guarantee at a
given confidence level that the numerical simulation is
validated in the context of uncertainty propagation.
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